
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5867 334

„Aquarius‟- Smart IOT Technology for Water

Level Monitoring System

Prof. A. M. Jagtap
1
, Bhaldar Saniya Sikandar

1
, Shinde Sharmila Shivaji

1
, Khalate Vrushali Pramod

1
,

Nirmal Kalyani Sarangdhar
1

Computer Science and Engineering, Rajarambapu Institute of Technology, Islampur, India1

Abstract: In mega cities of the world, Water deficiency is one of the crucial problem leads to wastage during

transmission. We aim to resolve this issue by using Internet of Things. Monitoring system plays an important role in

every household, commercial complex and even industries. The system used ultrasonic sensor to detect the level of

water in multiple tanks, switch on or off the pump accordingly and display the status on android device. The water level

is monitored and its data is sent through notification to the intended user‟s android device.

Keywords: Ultrasonic sensor, tanks, remote monitoring, IoT, Raspberry Pi.

I. INTRODUCTION

We need modern methods to protect and preserve as much

water. The wastage of water through storage tanks not

only waste water but also waste electrical and mechanical

energy required to utilize the pumps.

This problem motivated us to design an IoT enabled

architecture that can help anyone with an Internet

connection to administer water storage level easily without

even a click of a button. Looking at the increasing

popularity of the Android-based devices and its ability to

offer various features we decided to target this platform.

Alongside, we have also targeted the generic web platform
for those who do not own an Android device.

The web platform is mobile friendly which will make it

easy to run on any device available today ranging from old

phones to the current generation flagship devices such as

iPhones and Windows 10 Phones. This product may

reduce cost associated with water usage in large societies

or industries.

We get motivation from Modi‟s Smart City[15] vision

which concerns to an urban development vision to

integrate multiple Information and Communication

Technology (ICT) and Internet of Things (IoT) solutions.

 II. BASIC CONCEPTS

Some of the techniques for water level monitoring system

are described given below:

A. Water-Level Sensor[4]
:

The water-level sensors perform a two way

communication with the Raspberry Pi where it sends back

the raw sensor data when the Raspberry Pi demands for it.

This sensor works on the SONAR principle where it emits

an ultrasonic sound wave and receives it back.

When the voltage on the “TRIG” pin is high it emits the

sound wave and on receiving it back the voltage on the

ECHO pin is set to “HIGH”.

B. Raspberry Pi[7]:

The Raspberry Pi houses a Node.js script which performs

a two-way communication with the water-level sensor and

the MQTT broker respectively.

It receives a request from the Android or Web client via

the MQTT broker to get the water-level. On getting the

request it sends a “HIGH” signal to the sensor‟s TRIG pin.

The sensor then emits an ultrasonic sound wave which sets

the ECHO pin to HIGH after receiving it. This “HIGH”

signal is received back by the Raspberry Pi.

The Pi then calculates the distance based on the time
elapsed between the sending and receiving of the sound

wave. It then communicates with the MQTT broker and

sends it the calculated distance.

C. MQTT Broker[9]:

 The MQTT broker is a central server which runs on

Amazon Web Service‟s EC2 instance. The broker acts as a

bridge that connects all the modules.

 It is the centralized MQTT server that hosts topics

through with the communication takes place. For the

broker all the connected devices are clients (website,
Android app, and Raspberry Pi).

The website and/or Android app requests the Raspberry Pi

to send the water-level which is received by the broker

first. It then locates all the devices subscribed to that topic,

finds Raspberry Pi in the list, and forwards it the request.

Similarly, when the Raspberry Pi calculates the level it

publishes the level data to a particular topic which is

received by the broker first.

The broker then looks for all the devices subscribed to the

particular topic, finds website and/or Android app in the

list, and forwards the level-data.

D. Node.js server[10]:

The Node.js server is the web-hosting for our website. It is

a server for the website but acts as a client for the MQTT

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5867 335

broker. This server is running on a different Amazon Web

Service‟s EC2 instance.

The website is built using Node.js web-technology for two

purposes – speed and the ability to communicate with the

broker.
The Node.js server constantly demands the Raspberry Pi

to send the level, and on receiving the level-data it is

mapped to the web user interface.

E. Android MQTT Client[13]:

The Android counterpart acts similar to the web and acts

as a client for the broker.

The application uses “Paho MQTT library” as a dedicated

service which continuously demands the Raspberry Pi for

the water level.

F. Website:

The level-data received from the Raspberry Pi is then

mapped to a user-interface element on the website.

This element is a virtual imitation of a reservoir that

animates as the water-level in the actual reservoir changes.

G. Android application:

The Android app consists of two parts – the water

reservoir animated user interface, and the Android MQTT

client.

On receiving the water-level data from the Raspberry Pi,

the Android app calculates the level percentage and maps
it to the animated user interface.

Additionally, the Android app which runs Android MQTT

client as a service is also responsible to push level-change

notification to the user if his/her phone is screen-locked.

III. IMPLEMENTATIONS

1) Need to find water level in the tank. So, we use

ultrasonic sensor.

Fig.1 Using Ultrasonic Sensors

 2) There are 3 conditions:

 Water at lowest level (20%)

 Water at midlevel (50%)

 Water at highest level (100%)

3) Output of ultrasonic sensor is in cm. We convert it into

percentage and store it on a cloud using MQTT

technology.

4) This MQTT technology is used via Raspberry Pi.

Usually, the language of Raspberry Pi is python. But, we

use node.js for better live result.

Fig.2 Levels of Tank

5) We retrieve data from cloud and display it on LCD

screen using smart phones and websites.

6) We apply this methodology for multiple tanks using

different sensor to each tank and using only one Raspberry

Pi and only one database on cloud.
7) We use different techniques to analysis cloud data.

From this, we get time required to fill tank.

IV. PROPOSED WATER MONITORING

NETWORK

Our proposed system guarantees to accumulate a good

amount of usable water every day. This monitoring and

controlling system uses daily life device like laptop or

mobile phone.

Fig.3 Water Monitoring Network

Due to the fact of controlling remotely we introduced a

useful wireless automated controlling system. This newly

proposed web based monitoring and controlling network

can work with the existing water controlling system

successfully.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5867 336

V. SOFTWARE SPECIFIC REQUIREMENTS

It consists of all the functional and quality requirements of

the system. It also describes the system and its features in

detail.

1. External Interface Requirement:

This section gives a detailed description of all inputs into

and outputs from the system. It also describes the

hardware, software and how they interact and provides

basic prototype of the user interface.

i) User Interface:

User interface for the system is available on the Android

app and web portal. Both of these are designed with

minimalistic design keeping in mind the ability to use the
CPU and the GPU as less as possible.

The Android app uses a dramatic and immersive

representation of water tank and shows a beautiful wave

like animation.

The user interface for the Android app is designed using

manipulations of XML and Java. The laws of physics are

used for the accurate representation of waves.

The web portal uses material design using “Materialized

CSS” as well as some bootstrap for responsive design.

ii) Hardware Interfaces:
The hardware is an integral part of our project. The

following are the hardware components that we have used

in our project.

 Raspberry Pi

 Ultrasonic Sensor

 Jumper Wires

 Android device

iii) Software Interfaces:

The input from the hardware is systematically processed

and delivered using the following technologies.

 Node.js

 Paho MQTT Client

 Materialized CSS

iv) Communication Interface:

A client-broker architecture based protocol for machine to

machine communication. MQTT is a very powerful yet

lightweight protocol with a packet header of 2 bytes.

The MQTT client first connects to MQTT broker. In the

case of this project the broker is located at AWS instance

with a DNS broker running at port 1883.
After being connected the client subscribes to a particular

topic. When data is published on that topic the subscribed

clients are able to read the payload of the MQTT packet

and interpret the information.

This project will have a network server that is web-based.

The server exists to retrieve information from the database

and process on data.

The HTTP server will use a MQTT connection to get the

data. Furthermore, whenever a user opens the Android app

from their phone, a pull protocol will be used to retrieve

and sync the latest transaction updates from the server.

2. Functional Requirements:

The functional requirements for the system are divided
into following categories:

i) Getting input data:

The controller will use water level sensor for sensing

water level. Raspberry Pi will fetch sensor output from

controller using its GPIO pins.

ii) Processing data:

Inputted data from sensor will be packed at regular

intervals and sent to respective MQTT clients. Web server

will put the data in respected datasets for the particular
device. Web server will formulate and represent the data

in graphical format using HTML and XML in Android.

iii) Displaying the results:

The android app on authenticated user‟s smartphone will

display the result obtained from web server.

Also the results can be seen at web portal maintained

centrally.

The end user will have real time status of all the water

storage water level. Also the user can command raspberry

pi hardware to take further actions such as

starting/stopping pumps etc.

3. Performance Requirements:

For the complete satisfaction of a user or customer it is

necessary to achieve certain performance targets.

Following are some of the requirements we used to

evaluate the performance of the system.

i) Real-time ability:

Since this project is based on Internet of Things, it is only

useful if the data can be manipulated and viewed in real-

time. Despite being a real-time the system it is also event
driven. Real-time abilities allow users to take actions in

time which is one of the objectives of this project. If it was

not a real-time system, users might not be able to shut

down the pumps and save water.

This real-time ability is achieved with the help of MQTT

and web sockets.

ii) Workload:

The system is designed with client/broker architecture and

is beneficial in handling heavy load. Since it is topic

based, we can service as many users. The MQTT broker is

located in an EC2 instance provided by AWS which is
well-known for handling heavy workload and flexibility in

providing resources.

iii) CPU Utilization:

The initial attempts of creating this project were not up to

the mark due to limited processing abilities of the

Raspberry Pi. This problem was solved by using the

MQTT protocol.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 8, August 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5867 337

The only function of the Raspberry Pi now is to send raw

data from the sensor to the MQTT broker. It significantly

reduced the CPU utilization and increased the speed of the

entire system.

All the calculations now are done on the Android device
which does not bottlenecks the Raspberry Pi and boosts up

the entire system.

VI. FUTURE SCOPE

The current system uses Raspberry Pi 2, which is found to

be weak compared to latest Raspberry Pi 3 and Raspberry

Pi Zero. The Raspberry Pi 3 has built in Wi-Fi module

which was absent in the earlier versions.

Currently the Raspberry Pi and distance sensor are not

enclosed by a waterproof casing, we intend to fabricate it
with a well-designed waterproof casing to encapsulate the

complete module and make it more durable.

We can also apply machine learning algorithms on the

data gathered by the sensors and estimate time at which

the tank will overflow or when it has extremely low water

reserve level. This system will help to create intelligent

and automated systems which can reduce effort and

economic drags.

We can provide facility of auto-off when tank is reached

to maximum level.

Also we can calculate how much time is required for

reaching tank to its highest level by using data analysis.

Current system cost for water level monitoring system:

Raspberry Pi 2 with RAM 1GB Rs. 2899

Minimizing costs:

Raspberry Pi 0 Rs.550

Ultrasonic Sensor Rs.80

Jumper wires Rs. 125

AWS Server System Rs.854

Bracket coverage for Raspberry pi Rs.5

Total minimum cost for our product is Rs.1614

VII. CONCLUSION

Many entities and problem solvers have tackled the

problem of water wastage in their own way. We have

made a serious attempt at solving this problem and saving

one of the most precious commodity this world will ever

have- “water”. We focused on the problem of water

wastage through overflow of water reservoirs or tanks.

This project has successfully addressed this problem and

will most definitely help control it. The application uses
Internet of Things and Android platform to monitor water

level changes and also allows user to administer the water

tank from different corners of the world. It has automated

the entire process thus reducing energy wastage and

manual labour.

The centralized architecture of MQTT worked sublimely

and proved to be useful in carrying out most of the

functionalities of the system. Android is one of the most

widely used platforms for deploying applications. Various

features of raspberry pi and its ability to utilize sensor data

and support for development environment proved

beneficial.

The system is going to help home owners and

organizations to cut back economic losses and provide a

reliable way to manage water reservoirs without any

hassle. Future developments can improve the system and

make it more scalable.

REFERENCES

[1] Meena Singh ; TCS Innovation Labs., Bangalore, India ; M. A.

Rajan ; V. L. Shivraj ; P. Balamuralidhar, “Secure MQTT for

Internet of Things (IoT)”, Communication Systems and Network

Technologies (CSNT), 2015 Fifth International Conference.

[2] Dinesh Thangavel ; Fac. of Eng., Nat. Univ. of Singapore,

Singapore, Singapore ; Xiaoping Ma ; Alvin Valera ; Hwee-Xian

Tan, “Performance evaluation of MQTT and CoAP via a common

middleware”, Intelligent Sensors, Sensor Networks and Information

Processing (ISSNIP), 2014 IEEE Ninth International Conference.

[3] Seong-Min Kim ; Dept. of Multimedia Eng., Hanbat Nat. Univ.,

Daejeon, South Korea ; Hoan-Suk Choi ; Woo-Seop Rhee, “IoT

home gateway for auto-configuration and management of MQTT

devices”, Wireless Sensors (ICWiSe), 2015 IEEE Conference.

[4] Luc Moreau. Sump pump water level. instructables.com:

http://instructables.com/id/Sump-pump-water-level-The-software

[5] AWS - Amazon Web Services: http://aws.amazon.com

[6] Ultrasonic distance sensor: https://docs.google.com/document/d/

1YyZnNhMYy7rwhAgyL_pfa39RsB-x2qR4vP8saG73rE/edit

[7] Raspberry Pi: http://raspberrypi.org/about

[8] XMPP: https://xmpp.org/

[9] MQTT: http://mqtt.org

[10] Note.js: http://notejs.org

[11] IoT: http://en.wikipedia.org/wiki/Internet of Things

[12] Mqtt.js: https://www.npmjs.com/package/mqtt

[13] Paho MQTT Library: https://eclipse.org/paho/clients/android/

[14] Raspbian OS: https://www.raspbian.org/RaspbianImages

[15] https://en.wikipedia.org/wiki/Smart_city

